US 2005/0005261 Al

process of categorization. Classifiers include connectors,
datatypes, interfaces, models, and signals. Classifiers are
described using classifier descriptors including connector
descriptors, datatype descriptors, interface descriptors,
model descriptors, and signal descriptors.

[0044] For the purposes of the present invention, the term
“command” refers to a component that performs a specific
action. In addition a command must describe the input data
it expects and the output data it produces.

[0045] For the purposes of the present invention, the term
“component integration engine” or “CIE” refers an applica-
tion that is able to assemble software applications directly
from the description of the software application. A compo-
nent integration engine provides a mechanism for using the
meta-implementation layer to construct software applica-
tions in a consistent and effective manner through simple
integration techniques without requiring lower-level pro-
gramming language implementation. A component integra-
tion engine is a software engine that combines software
components through metadata.

[0046] For the purposes of the present invention, the term
“machine readable medium” refers to any medium or media
on which a software program or data for a software program
may be stored for use by a computer system. Examples of
data machine readable media include such as floppy disks,
Zip™ disks, CD-ROM, CD-R, CD-RW, DVD, DVD-R,
flash memory, hard disks, optical disks, etc. The meta-
implementation layer and/or component integration engine
or any part of the meta-implementation layer or component
integration engine of the present invention may be stored on
one or more machine readable media that together effec-
tively act similarly to single machine readable medium. Two
or more machine readable media acting similarly to single
machine readable medium may be referred to as a “machine
readable medium” for the purposes of the present invention.

[0047] For the purposes of the present invention, the term
“software component” or “component” refers to a binary
object or program that performs a specific function and is
designed in such a way to easily operate with other com-
ponents and applications.

[0048] For the purposes of the present invention, the term
“constraint” refers to a limit or restriction in a metamodel.
Several types of constraints exist in metamodels. Occur-
rence constraints limit the number of times an instance can
occur in the model. Occurrences cannot be negative. Value
constraints limit the values allowed for an attribute. Access
constraints restrict the use of a feature to users who hold the
required credentials. Some examples of occurrence con-
straints are: “the box model can contain a maximum of
twelve instances,”the box model must contain at least one
can instance,”“the car model can hold from zero to seven
passenger instances,” etc. Some examples of value con-
straints are: “the ‘apple’ model ‘color’ attribute is of
datatype string and must be one of: [‘Red,”*Green,’* Yel-
low’], “the ‘test’” model ‘percentage right’ value is of
datatype number and must be between O and 100,”“the ‘cat’
model ‘owner name” attribute value is of datatype string and
must be less than 60 characters long,” etc. Some examples
of access constraints: The “apple” model “color” attribute is
restricted to users in the “grocer” group. The “test” model
“percentage right” value can only be written to if the user is
in the “teacher” group.

Jan. 6, 2005

[0049] For the purposes of the present invention, the term
“descriptor” refers to an interface implemented by classes
that describe an implementation. The descriptor contains the
descriptions of features and functionality allowed and
required in an implementation. A descriptor is a specific type
of metadata.

[0050] For the purposes of the present invention, the term
“failure” refers to a software operation being unable to
successfully complete, breaking out of the current execution
and rising up the stack until the failure can be handled.
Failures are broken into several categories: A “functional
error” occurs when an operation should succeed, but an
unusual or infrequent condition in the system prevented
success. A “data error” occurs when improper or missing
data is provided to an operation which requires that data in
order to succeed. A “data bug” occurs when data is provided
that is correct according to the rules for the data but the
program did not anticipate and cannot handle that data. A
“functional bug” describes an operation that successfully
completes even though it completes the incorrect operation.
Functional bugs are not always automatically detected dur-
ing execution. Some functional bugs are detected by post-
condition constraints.

[0051] For the purposes of the present invention, the term
“feature descriptor” refers to a part of a metamodel that
describes each feature of the model described by the meta-
model. Feature descriptors for operations are referred to as
“operation descriptors”. Feature descriptors for attributes are
referred to as “attribute descriptors”. Feature descriptors for
operation parameters are referred to as “parameter descrip-
tors”. Feature descriptors for constraints are referred to as
“constraint descriptors”. Feature descriptors for constructors
are referred to as “constructor descriptors”. Feature descrip-
tors for destructor are referred to as “destructor descriptors™.
Feature descriptors for failures are referred to as “failure
descriptors”. Feature descriptors for signals are referred to as
“signal descriptors”. Each feature descriptor also includes
name, description, and display name attributes. The name
attribute is used to identify the name of the feature being
described. The description attribute is used to describe the
usefulness and purpose of the feature. The display name
attribute is used to present a human readable name for the
feature and may or may not be different from the value
assigned to the name attribute.

[0052] For the purposes of the present invention, the term
“generalization/specialization relationship” refers to a rep-
resentation of the modeling processes of abstraction and
categorization. A model specializes another model of the
present invention by extending it. A model generalizes
several other models by serving as a base model to those
other models. Interfaces also participate in generalization/
specialization relationships. Models specialize interfaces by
implementing them in a specific way. Interfaces generalize
models that share certain characteristics to in order to allow
for polymorphic functionality.

[0053] For the purposes of the present invention, the term
“implementation” refers to a structure that provides a
mechanism to execute of all operations (including methods,
signals, etc.) described in a descriptor, a mechanism to hold
all static data described in a descriptor (including attributes,
parameters, etc.), and a mechanism for creating instances of
the type described by the descriptor. The instances created



